Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer.
نویسندگان
چکیده
PURPOSE HER2-amplified breast cancer is sometimes clinically insensitive to HER2-targeted treatment with trastuzumab. Laboratory models of resistance have causally implicated changes in HER2 expression and activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway. We conducted a prospective tissue acquisition study to determine if there is evidence for these lesions in metastatic tumors that have progressed on trastuzumab-containing therapy. EXPERIMENTAL DESIGN From 2/2007 to 11/2011, 63 patients with HER2-amplified breast cancer with recurrence of disease after adjuvant trastuzumab therapy or World Health Organization-defined progression of metastatic disease on a trastuzumab-containing regimen were prospectively enrolled and underwent tumor biopsy. Specimens were analyzed for activating mutations in PIK3CA and HER2 by Sequenom and analyzed for HER2 and PTEN status by immunohistochemistry. RESULTS In 53/60 cases (88%, 3 cases not evaluable for HER2), HER2 overexpression persisted in the metastatic tumor following trastuzumab exposure. Among the 7 cases lacking HER2 overexpression, repeat analysis of the pretreatment tumor failed to confirm HER2 overexpression in five cases. Among cases evaluable for PTEN (56) or PI3K mutation (45), absent or significantly diminished PTEN expression was noted in 33 (59%) and activating mutations in PIK3CA in 13 (29%). The combined rate of PTEN loss and PIK3CA mutation in the trastuzumab-refractory tumors was 71% compared with 44% (P = 0.007) in an unexposed cohort of 73 HER2-amplified tumors. CONCLUSIONS In this series of prospectively collected trastuzumab-refractory human breast cancers, loss of HER2 overexpression was rare, whereas activation of the PI3K-AKT pathway through loss of PTEN or PIK3CA mutation was frequently observed.
منابع مشابه
Predictive Biomarkers and Personalized Medicine Frequent Mutational Activation of the PI3K-AKT Pathway in Trastuzumab-Resistant Breast Cancer
Purpose: HER2-amplified breast cancer is sometimes clinically insensitive to HER2-targeted treatment with trastuzumab. Laboratory models of resistance have causally implicated changes in HER2 expression and activation of the phosphoinositide 3-kinase (PI3K)–AKT pathway. We conducted a prospective tissue acquisition study to determine if there is evidence for these lesions inmetastatic tumors th...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملActivated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib.
Trastuzumab and lapatinib provide clinical benefit to women with human epidermal growth factor receptor 2 (HER)-positive breast cancer. However, not all patients whose tumors contain the HER2 alteration respond. Consequently, there is an urgent need to identify new predictive factors for these agents. The aim of this study was to investigate the role of receptor tyrosine kinase signaling and ph...
متن کاملTargeting PI3K/mTOR overcomes resistance to HER2-targeted therapy independent of feedback activation of AKT.
PURPOSE Altered PI3K/mTOR signaling is implicated in the pathogenesis of a number of breast cancers, including those resistant to hormonal and HER2-targeted therapies. EXPERIMENTAL DESIGN The activity of four classes of PI3K/mTOR inhibitory molecules, including a pan-PI3K inhibitor (NVP-BKM120), a p110α isoform-specific PI3K inhibitor (NVP-BYL719), an mTORC1-specific inhibitor (NVP-RAD001), a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 18 24 شماره
صفحات -
تاریخ انتشار 2012